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Abstract. In theories with branes, bulk fields get in general divergent corrections localized on these defects.
Hence, the corresponding brane terms are renormalized and should be included in the effective theory from
the very beginning. We review the phenomenology associated to brane kinetic terms for different spins and
backgrounds, and point out that renormalization is required already at the classical level.

PACS. 11.10.Kk Field theories in dimensions other than four – 11.25.Wx String and brane phenomenology

1 Introduction

Models with extra dimensions and branes allow for new
ways of addressing longstanding questions within the
Standard Model (SM), such as the hierarchy problem or
the structure of fermion masses and mixings. (See [1] for
a review of their phenomenology.) These models are non-
renormalizable and must be understood as effective the-
ories valid at energies below a certain cutoff Λ. One can
distinguish fields which propagate in all dimensions (“bulk
fields”) from those which propagate only on the branes.
Both kinds of fields can couple via operators which are
necessarily localized on the branes [2,3]. One can also con-
sider brane localized operators involving only bulk fields.
Since Poincaré invariance is broken by the presence of
the brane (through brane fields or an orbifold projection),
these operators typically receive divergent radiative cor-
rections which require renormalization [4,5]. Thus, their
coefficients run and cannot be set to zero at all scales.
It is therefore natural to include the brane terms from
the very beginning in the (tree-level) effective action. In
particular, one should expect the presence of Brane local-
ized Kinetic Terms for all fields in the bulk (BKT). Their
impact on phenomenology has been studied recently for
different fields and backgrounds in a number of papers. It
is our purpose here to review some of the main results in
these works. We will also emphasize the breakdown of the
low-energy expansion brought about by certain BKT, and
comment on how to make sense of the theory.

2 Phenomenology of brane kinetic terms

The action for a bulk scalar in 5D with BKT has the form

S =
∫

d4x

∫
dy

(
∂Mφ†∂Mφ + aφI δI∂µφ

†∂µφ + . . .
)
, (1)

where δI ≡ δ(y−yI), yI are the location of the branes and
a sum over I is implicit. In the 1/Λ expansion, the first
term is order zero, whereas the second one is order 1/Λ.
In order for this expansion to be well defined, in the limit
aφI → 0 the observable predictions should approach the
ones for aφI = 0. However, this is not true for all BKT [6].
We will comment on “singular” BKT later in Sect. 3 and
stick for the moment to BKT which behave smoothly when
their coefficients go to zero. The phenomenological impli-
cations of these terms depend on the type of field, but
they look pretty similar for different backgrounds (in com-
pact scenarios). We discuss gauge fields, gravitons, and
fermions in turn. We consider the coefficients of the BKT
as free parameters of arbitrary size. Observe that even if
they are small they can significantly modify the physics
by breaking degeneracies among KK modes [7].

2.1 Gauge fields

BKT for gauge bosons in infinite extra dimensions have
been considered in [8], with features analogous to the ones
described for the graviton below. In this subsection we
consider only bulk gauge bosons propagating in compact
extra dimensions. The case of M4×S1/Z2 has been studied
in [9]. The corresponding lagrangian is

L = −1
4
(
trFMNFMN + aAI δItrFµνFµν

)
+ . . . , (2)

with I = 0, π, and then the branes located at yI = IR
with R the orbifold radius. For aA0 + aAπ ≤ −2πR there
are ghosts, and for −2πR < aAI < 0 tachyons, so we must
take aAI ≥ 0. From a 4D point of view, this theory is
described by a Kaluza-Klein (KK) tower of spin 1 fields,
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Aµ(x, y) =
∑∞
n=0

fA
n (y)√
2πR

A
(n)
µ (x), with eigenfunctions fAn (y)

of eigenvalue mn diagonalizing (2). The BKT modify the
diagonalization and normalization equations and, hence,
the eigenfunctions and eigenvalues of the heavy modes. If
only a0, say, is nonvanishing, the latter decrease, whereas
the former tend to decouple from the y0 brane. Hence,
they are easier to reach at large colliders but, if matter is
located at y0, their production cross sections are smaller.
See [9,10] for the detailed dependence. For equal non-zero
BKT at both branes, the lightest KK boson acts as a
collective mode which becomes light and non decoupling
for large aAI .

The integration of the KK modes gives four-fermion
operators whose strengths are constrained by precision
electroweak (LEP) data [11]. The reduction of the KK
masses and couplings in the presence of BKT produces
as a net result a relaxation of the corresponding limits,
allowing for a lower compactification scale 1/R [9,10].

An analogous behaviour is shared by warped back-
grounds. A detailed discussion of the implications of non-
vanishing BKT for the Randall-Sundrum (RS) model [12]
can be found in [13,14], with similar conclusions. In partic-
ular, models with lower KK masses, maybe at the reach of
next colliders, can be accommodated within experimental
bounds.

Finally, we should mention that BKT must be kept
small in GUT scenarios such as [15], as they can spoil
gauge unification. On the other hand, they can be help-
ful in improving some features of models of electroweak
symmetry breaking [16].

2.2 Graviton

Since gravity necessarily propagates in all the space, we
must expect graviton BKT to be a generic feature of mod-
els with branes. These terms were first introduced to al-
low for an effective 4D Newton’s law in 5D models with
an infinite extra dimension [4]. The addition to the 5D
curvature term R(5) of a brane term agδ0R

(4) gives rise to
Newton’s law V (r) ∼ 1

r at small distances r � ag, and to
a quadratic power law V (r) ∼ 1

r2 at larger ones r � ag.
Then, on phenomenological grounds the transition length
ag must be of the size of the present horizon. This modifi-
cation of 4D gravity at large distances is very interesting
since it allows for solutions of the cosmological constant
problem, evading no-go theorems for theories which are
4D in the infrared [17,18]. This model, however, presents
strong quantum effects at distances ( a

g2

MP
)1/3 ∼ 1000 km,

where MP is the Planck mass, requiring new physics at
this scale and then making the proposed model incom-
plete [19,20]. (According to [21], however, this might be a
calculational artifact.)

For a compactified extra dimension, the analysis of
BKT is similar to the one of gauge bosons discussed above.
The RS model with BKT,

L =
M3

5

4

√−G
(
R(5) + agIδIR

(4) + . . .
)
, (3)

has been analysed in [22]. Again, the 4D KK gravitons
may be significantly ligther for large agI than for vanish-
ing BKT, and their couplings to matter on the brane are
smaller. They may avoid detection at large colliders as
their widths may be too narrow to be observable. They
also give rise to four-fermion operators when integrated
out, but in this case their strengths are independent of
agI for a wide range of parameters. Finally, gravitational
BKT are also useful in model building. For instance, they
have been invoked in a model of gravity mediated super-
symmetry breaking to avoid negative squared masses for
scalars [23].

2.3 Fermions

The phenomenological consequences of BKT for bulk
fermions in a 5D theory compactified on M4 ×S1/Z2 were
presented in [24]. The lagrangian is

L = (1 + aLI δI)Ψ̄LiγµDµΨL + . . . . (4)

Again, the KK wave functions and masses are modified.
As the new terms multiply the covariant derivative, the
4D gauge couplings for the different KK states get correc-
tions both from the new wave functions and from the new
effective couplings

g(mnr) =
g5√
2πR

∫
dy (1 + aLI δI)

fLmfLn fAr
2πR

, (5)

where L, A label fermion and gauge boson wave functions,
respectively, and g5 is the 5D gauge coupling. By gauge
invariance, gauge bosons must propagate in the bulk if
fermions do. Hence, the integration of the heavy KK gauge
bosons give new contributions to four-fermion operators
bounded by electroweak precision (LEP) data [11]. Us-
ing (5) and the corresponding experimental limits one
can estimate the exclusion region for the compactification
scale as a function of aLI [10,24]. The constraints become
stronger with growing BKT, in contrast with the situation
in Sect. 2.1 and 2.2.

The observed fermions are zero modes which get their
masses through Yukawa couplings after the spontaneous
symmetry breaking of the SM. These couplings also gener-
ate mixings with the heavy KK fermions. Hence, a precise
determination of the charged current mixing matrix con-
strains the mixing and masses of these exotic fermions,
and thus the compactification scale [25]. In the presence
of BKT their masses and mixings can be reduced, with
the net effect of relaxing the experimental constraints. As
a consequence there is room for producing new vector-like
fermions at future colliders in many models [26].

3 General brane kinetic terms

The effects of the BKT in Sect. 2 are in general sizable only
when the coefficients are large. Then, higher order terms
in the effective theory may have to be taken into account.
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In general, one must also include BKT with derivatives
orthogonal to the brane. These have a nonanalytical be-
haviour, in the sense that they give big effects for arbitrar-
ily small coefficients. A detailed discussion can be found
in [6]. The most general kinetic terms for scalar, gauge
bosons and fermions read

L = (1 + aφI δI)∂µφ
†∂µφ − (1 + cφI δI)∂yφ

†∂yφ

+ bφ
I

2 δI(φ†∂2
yφ + ∂2

yφ
†φ),

(6)

L = − 1
4 (1 + aAI δI)FµνFµν

− 1
2 (1 + cAI δI)F5νF

5ν ,
(7)

and

L = (1 + aLI δI)Ψ̄Li 	∂ΨL + (1 + aRI δI)Ψ̄Ri 	∂ΨR
−(1 + bψI δI)Ψ̄L∂yΨR − bψI δI

(
∂yΨ̄R

)
ΨL

+(1 + cψI δI)Ψ̄R∂yΨL + cψI δI
(
∂yΨ̄L

)
ΨR,

(8)

respectively. Let us discuss for illustration the scalar case
in (6) with BKT at y0 only. For bφ0 	= 0, the KK masses
and wave functions diagonalizing the kinetic terms turn
out to be independent of aφ0 , bφ0 and cφ0 . Furthermore, their
limits when bφ0 → 0 do not coincide with their values at
bφ0 = 0, which in particular have a non-trivial dependence
on aφ0 . This translates into dramatic changes in the ob-
servables for arbitrarily small bφ0 . This singular behaviour
comes from the fact that we are considering branes of zero
width. In perturbation theory, it manifests itself as sin-
gular products of delta functions at the origin. Taken at
its faith value, this is catastrophic, as it means that all
models in which these operators can be induced are badly
defined as effective field theories. Fortunately, the singular
behaviour can be smoothed down. The obvious way is to
consider branes with finite thickness [27,28]. However, pre-
dictions will then depend on the particular profile of the
brane. Another possibility is to go beyond regularization
of the brane, and renormalize the theory at the classical
level through the introduction of higher order countert-
erms which cancel the singularities [6]. For instance, the
second order counterterm

Lct = bφ2
0
4

{ − δ2
0(y)∂µφ†∂µφ − ∂y

[
δ0(y)φ†]∂y[δ0(y)φ

]
+δ2

0(y)
(
φ†∂2

yφ + ∂2
yφ

†φ
)}

,

(9)
makes the limit bφ0 → 0 well-defined to second order. At
this order, the effect of the singular BKT can be absorbed
into a redefinition of the coefficients of the nonsingular
BKT. It is plausible that, after proper renormalization,
the effects of all possible BKT can be parametrized only
by the coefficients of the nonsingular ones. If this is the
case, their phenomenology will reduce to the one discussed
above.

To finish, let us mention that the situation in super-
symmetric theories is similar, except for the fact that some
of the possible BKT are stable against radiative correc-
tions [6] (see also [29,30]).
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